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place can be determined from the following set of 
equations: 

I~(xo)l = 9.06/3c 

a(Xo) = S( 2 t/2 ~,)(~,-1) 

yb sin 20~ [ 1 
+27r(XhX~) I/2 ~x~ + y 2 

,) 
x2 + y 2 =0. 

In this way we may obtain the theoretical dependence 
of the y of maximal fringe intensity on r/i. Indeed, 
by solving the above set of equations we readily 
obtained the same type of dependence of the 
maximum fringe intensity that can be seen in the 
simulations. The agreement is, however, only qualita- 
tive. This is because the wavefields (/4 and 15) arriving 
at the crystal surface interfere. Certainly, it is also an 
important factor that the region where the trajectories 
change dramatically and wavefield creation takes 
place is quite small (21xol of the order of 20 i~m) 
compared with the wave-front width in the real topo- 
graphic conditions where a plane wave was employed. 

5. Conclusion 

In this paper a very important result concerning X-ray 
propagation has been obtained: geometrical optics 
results can be used if one takes into account the 
creation of new wavefields which occurs along every 
beam trajectory at the point where a =0  with an 
intensity directly related to the value of the strain 
gradient at this point. This result has been demon- 
strated here in the Bragg case but it is general enough 
to be valid also in the Laue case. 

Such an 'extended' geometrical-optics treatment 
when applied to any practical type of distortion, e.g. 
a dislocation line, should lead to a better understand- 
ing of the contrast origin in X-ray topographs. 

As pointed out, geometrical optics cannot be 
applied in the total reflection range of the Bragg case. 
It seems, however, that there should be a similarity 
between the mechanism of the new wavefield creation 
in strongly deformed crystals and the phenomena 
occurring during total reflection. In this respect, it is 
obviously worthwhile to study this mechanism in 
more detail. 
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(Fig. 6). They are also grateful to Dr Y. Epelboin 
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financial support of CNRS for subsidizing a one-year 
stay at the Laboratoire de Minrralogie-Cristal- 
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References 

AUTHIER, A. & BALIBAR, F. (1970). Acta Cryst. A26, 647-654. 
BALIBAR, F. (1969a). Acta Cryst. A25, 650-658. 
BALIBAR, F. (1969b). Thesis, Paris. 
BALIBAR, F., CHUKHOVSKII, F. N. & MALGRANGE, C. (1983). 

Acta Cryst. A39, 387-399. 
BAL1BAR, F., EPELBOIN, Y. & MALGRANGE, C. (1975). Acta 

Crvst. A31,836-840. 
BEDYNSKA, T. (1973). Phys. Status Solidi, AI8, 147-154. 
BEDYNSKA, T. (1978). Dissertation, Warsaw (in Polish). 
BEDYNSKA, T., BUBAKOVA, R. & SOUREK, Z. (1976). Phys. Status 

Solidi, A36, 509-516. 
BONSE, U. (1958). Z. Phys. 153, 278-296. 
BUBAKOVA, R. & SOUREK, Z. (1976). Phys. Status Solidi, A35, 

55-60. 
EPELBOIN, Y. (1978). J. Appl. Cryst. 11,675-680. 
GRONKOWSKI, J. & MALGRANGE, C. (1984). Acta Cryst. A40, 

507-514. 
PENNING, P. & POLDER, D. (1961). Philips Res. Rep. 16, 419-440. 
RENNINGER, M. (1965). Z. Angew. Phys. 19, 20-35. 
TAKAGI, S. (1969). J. Phys. Soc. Jpn, 26, 1239-1253. 

Acta Cryst. (1984). A40, 522-526 

A Matrix Basis for CBED Pattern Analysis 

BY P. GOODMAN 

CSIRO, Division of  Chemical Physics, Melbourne, Australia 

(Received 31 July 1983 ; accepted 4 April 1984) 

Abstract 

A simple construction procedure is given for conver- 
gent-beam electron diffraction (CBED) pattern 
matrices as symmetry elements in diffraction space 
coordinates. These are constructed from a limited set 
of point-group elements, namely those belonging to 
the layer groups of Alexander & Hermann [Z. Kristal- 

0108-7673/84/050522-05501.50 

logr. (1929), 70, 328-345]. As a result a transformation 
is found between crystal and diffraction space in 
which the three-dimensional crystal symmetries trans- 
form into four-dimensional intensity distributions. 
Equivalent anti-symmetric matrices which operate on 
amplitudes rather than intensities are found for non- 
symmorphic space-group elements. 
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I. Introduction 

It is well known that the Seitz matrices (Seitz, 1935) 
can readily be transformed into reciprocal space, and 
that the transformed matrices offer a precise descrip- 
tion of the kinematic X-ray diffraction pattern sym- 
metries. The 3 × 3 rotational component,  R, of these 
matrices is even more simply handled, becoming 
simply its transpose, R T, in reciprocal space. Further- 
more, a matrix-based nomenclature for the space- 
group symbols has recently been proposed by Hall 
( 1981 ) with the aim of giving a more explicit notation. 

The current problem in electron diffraction, of 
analyzing zone-axis pattern symmetries, is super- 
ficially at least more complicated. At first, it is not 
immediately obvious that an equally simple transfor- 
mation between crystal space and pattern space will 
apply. CBED patterns result from intense N-beam 
dynamic interaction and are not, as are their counter- 
part in X-ray diffraction, subject to the restrictions 
of the Laue group. Their information content is corre- 
spondingly high. An analysis by Tanaka, Sekii & 
Nagasawa (1983), for example, has shown that 202 
of the 230 three-dimensional space groups can be 
identified from characteristics associated with CBED 
pattern extinctions. 

In spite of their inherent value, however, recent 
debate over interpretation (Ishizuka, 1982; Eades, 
Shannon & Buxton, 1983) serves to illustrate the point 
that current methods of analysis, which include scat- 
tering diagrams and analytical approximations 
(Ishizuka, 1983), are insufficiently precise to allow 
unequivocal interpretations of CBED pattern sym- 
metries. On the other hand, matrices of appropriate 
order provide the logical means for writing down the 
symmetry operations within the CBED pattern, and 
ultimately for forming the appropriate diffraction 
group. 

- x  + x  

K I,ne 

tt" hk] 

O0 
d isc  

+ 
c e n t e r  

Fig. I. The system of axes, relative to a specific hk disc, in which 
an origin is defined by the intersection of the K line or trace of 
Ch = 0 for that reflexion, and the diffracting vector drawn from 
the pattern center (see text). 

A revision of CBED nomenclature can be 
envisaged in three stages: 

(1) provision of a matrix expression for CBED 
pattern symmetry elements; 

(2) derivation of appropriate groups for both pat- 
tern space (diffraction groups) and crystal space 
(space groups) ; 

(3) subsequent provision of an interrelation 
between the resulting groups and the space groups 
of three-dimensional crystallography. 

If this were achieved there could be available some- 
thing of  the algebraic background currently available 
to kinematic X-ray diffraction. 

In the present paper, which forms the first part of 
a series, we give a recipe for the construction of 4 x 4 
CBED symmetry elements from a restricted set of 
point-group operators, namely those belonging to the 
space groups of two-dimensionally periodic layers 
(Alexander & Hermann, 1929), known as the ' layer 
groups'. These matrices refer to coordinates in CBED 
pattern space. 

II. Coordinate  system 

We first define a system of axes applicable to the 
pattern, which, incidently, is closely similar to the 
system adopted in the original Cowley & Moodie 
(1957) paper on dynamic diffraction, and proceed to 
define any point in the CBED pattern (a CBED pat- 
tern consists of a set of intensity discs) by the column 
vector 

k 

l +  " 

X 

Here, (h, k) describes a specific reflexion disc, or 
order, and (l +s, x) defines a point within that order 
with respect to the set of orthogonal axes determined 
by (i) the K line for that order (defined in the Fig. 
l caption) and (ii) the [hk]* dittracting vector drawn 
from the zone-axis center in the pattern. These axes 
intersect at an origin for that disc, i.e. the 'central 
point '  defined earlier (Goodman,  1975). The ordinate 
s is then a specific excitation error (s =--~'h in the 
Cowley-Moodie  notation), l is taken parallel to s 
(see Fig. 1 ), and the abscissa x is a collective N-beam 
excitation error ¢'N, for ~'h = constant.t  

t Here ! has the restrictions or requirements similar to those 
implicit in the Cowley-Moodie notation (Cowley & Moodie, 1957, 
p. 615), which uses U(hk) for the zero-layer (/=0) wave ampli- 
tude. In point of detail, the Cowley-Moodie nomenclature defines 
the excitation errors, ~'h, to represent a z-axis component of kinetic 
energy, where this axis is taken as coincident with the incident- 
beam direction, so that ~o =0, whereas the present definitions 
would have the i index running parallel to the surface normal of 
the lamellar crystal. This latter definition has obvious advantages 
in symmetry analysis. 
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The formulation here is made convenient for prin- 
cipal zone axes, where the main symmetry occurs, 
and where there is most need for symmetry-interactive 
expressions. 

The combination of indices as (l +s)  is correct for 
zone axes orthogonal to the principal hkO net. This 
applies to systems of higher symmetry: hexagonal, 
tetragonal, cubic and orthorhombic. The combination 
index takes into account the overlapping of shape 
transforms which occurs between layers defined by 
different I values, l = 0, l, 2 , . . . .  Thus, more than one 
value of l contributes to a given point on the shape 
transform since s is a continuous variable. This over- 
lap effect, found within the summation over l of the 
N-beam scattering equations (Cowley & Moodie, 
1957) provides one of the two categories of 'upper- 
layer interaction' in N-beam diffraction, the other 
category being that provided by dynamic scattering 
paths between non-overlapping transforms. 

The only important system for which this combina- 
tion index is incomplete at a principal setting is the 
monoclinic system in alternative (non-orthogonal) 
settings. In this case, since c is not parallel to c*, the 
overlapping effect does not occur. Then the only 
complication is that there are two components of s 
required in the general diffraction vector, which 
becomes 

,7,,/ 
This complication is not referred to again as it adds 
nothing to the analysis, which remains valid, with the 
above understanding for mofioclinic settings. (The 
triclinic system has not been discussed since it has 
only one possible non-translational symmetry.) 

III. Rotational symmetry elements 

W r i t i n g  r 2 for a 2 x2 symmetry element from the 
groups of plane rotations R 2 (referred to reciprocal- 
space coordinates) we have the following general 
form for a CBED pattern matrix: 

, ,oo\  
,,_o _o I 

o o lv  o]' 
0 0 '10 q~ 

in which p and q can have the values +1 or -1 .  This 
matrix operates on the above column matrix in h, k, 
l+s,  x to give h~, kl, ( /+s ) l ,  xl etc., the intensity- 
(or amplitude-) equivalent points in the CB pattern. 

A useful subdivision into direct and indirect sym- 
metry elements results in the following. 

Direct symmetry operations, in which the l + s  
index is unchanged, can, by choice, be represented 
by a 3 ×3 matrix, by omitting the third row and 
column above, viz 

( r 2 0 )  O p e r a t i n g O n ' 0  +1 ' 

These operations are pure rotations about a vertical 
axis and the dichromatic index (the q index from 
above) is given by det [ral. This is +1 for a proper 
rotation and -1 for an improper rotation (mirror 
reflexion). 

Indirect symmetry elements (i.e. those invoking 
reciprocity) involve a change in the sign of l + s and 
so require the 4 x4 rotation matrix, 

°iltr2 il r2 I I 0 = r2,2 
o i -  i ,= 
o,, o ±l / oo 

operating on the full CB diffraction vector: 

r2'2(lx÷S. " 

Here, r 2'2 is an element of the doubly dichromatic 
rotation groups R 2'2, the sign of the dichromatic 
indices being determined by: p, whether or not 
reciprocity is involved (direct and indirect 
categories); and q, the three-dimensional nature of 
the rotation element (i.e. whether proper or 
improper). 

The matrix elements of r 2'2 can be constructed from 
the elements r 2"~, which are the transposed rotation 
elements from the layer groups. 

In this nomenclature the Buxton, Eades, Steeds & 
Rackham (1976) CBED pattern operator _R is given by 

E 0 

Symmetries of the central beam of CBED patterns 
are higher than those of the whole pattern since the 
two origins of the constituent matrices are coincident. 
Since both direct and indirect symmetries act 
independently, if we take one axis, So, to be coincident 
with a principal crystallographic axis h, the symmetry 
is given by 

q /  \Xo/  

with Xo orthogonal to So. It can easily be seen that 
the rotational group concerned has the character of 
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the Laue group since for a crystallographic center of 

symmetry both r2 and (0p 0)  are equal to - E ,  so 
q 

that the property of centrosymmetry cannot be deter- 
mined. 

Rotation elements of R 2'2 given above have a 'semi- 
arithmetic' definition, i.e. they include the elements 
m, m', 2, 2' (Hall, 1981, nomenclature), which are 
specifically aligned to the axial system. The relevance 
of this definition with regard to CBED classification 
is discussed in another publication (Goodman, 
1984b). 

CBED matrices provide a basis for further group 
treatment and the transformation R 2'1 ~ R  2,z permits 
a simple derivation of diffraction groups for symmor- 
phic space groups. 

IV. Extinctive space-group elements 

Compound symmetry elements which arise in non- 
symmorphic space groups can be defined, in a manner 
parallel to that demonstrated by Hall (1981) for X-ray 
kinematic diffraction, as anti-symmetric versions of 
the rotation matrices, with the matrices operating on 
diffraction amplitudes rather than intensities.* This 
permits a compact statement of the Gjonnes & 
Moodie (1965) rules for dynamic extinction. The anti- 
symmetries generated are shown schematically in 
Fig. 2. 

Hence, the vertical glide plane, conventionally 
symbolized by a, is represented by 

( - -1)  h f 0 (h)k 
- l - t - -  operating on ' + ' 

0 i 
tO + 

which is anti-symmetric in x for h odd (Fig. 2b). 
Summation over + and - terms results in the gener- 
ation of Gj0nnes-Moodie (G-M) 'A' bands in the 
k = 0 reflexions, and for all values of l + s, when x --= 0, 
the width of the bands being a function of an 
arbitrarily small finite value chosen for & 8 can be 
regarded as a half-width for dynamic interference. 

* The anti-symmetric matrices of this section have a restricted 
application in being applied to amplitudes rather than intensities. 
Reciprocity (e.g. Moodie, 1972), involving an inversion of the 
coordinate (l + s), implies only equivalent intensities, as generally 
applied. Conditions for exact symmetry or anti-symmetry of ampli- 
tudes and phases occur only for (a) direct symmetries for which 
(I +s)  is unchanged or (b) for indirect symmetries when (l +s)  is 
close to (strictly equal to) zero. These are the two conditions A 
and B of Gj0nnes & Moodie (1965), more recently investigated 
quantum-mechanically by Portier & Gratias (1981). 

The restricted application referred to is therefore relevant, since 
it refers to just those regions of pattern used in identifying non- 
symmorphic group symmetry elements. 

Similarly, the horizontal twofold screw axis, 21, is 
represented by 

o 

operating on 

which is anti-symmetric in (1 +s)  for h odd (Fig. 2c). 
The horizontal glide plane, a, is similarly 

it0 l(ht )hIO - I I k 

( -1  1 --II-10 - (l+s)+' ' x + t S , ,  

where there is a need to distinguish between extinc- 
tion widths 3' and 3". This leads to a diagonal anti- 
symmetry (Fig. 2d), and generates the Gj0nnes & 
Moodie condition (Ac~B). There is no specific 
requirement here for orthogonal axes (illustrated in 
Fig. 2d), and this extinction will occur in a two- 
dimensional set of hkO reflexions, in rows with h odd. 
(Those with h even will have a centrosymmetric distri- 
bution.) 

This gives the three basic types of compound sym- 
metry elements, drawn from the same restricted set 
of groups, R 2'1. Allowing for permutations of the 
translation vector and rotation axes amongst the crys- 
tallographically allowed directions space groups can 
be formed in these coordinates. General three- 

Gjonnes - 
Moodie 

Bands A,B 

A 

(a) (b) 

- ) 

B 
(c) (d) 

Fig. 2. The three anti-symmetric distributions related to the three 
GjCnnes-Moodie conditions A, B and A n  B (see text). The 
orientation of the discs is the same as that in Fig. 1. 
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dimensional extinction conditions outside the layer- 
group restrictions have not been included at this stage 
although extensive results along these lines have been 
produced by Tanaka, Sekii & Nagaswa (1983). 
Instead, we note that these extended conditions can 
be found from three-dimensional lattice groups for- 
med from the same restricted set of point groups 
(Goodman, 1984b). 

V. Preliminary requirements for application 
The central plane approximation 

Abstractly the transformation from R 2'2 to R 2'1, to 
the crystal-space coordinates of the layer groups, 
applies. We now examine the main assumption 
needed in order to apply this to real crystals. In the 
central plane approximation (CPA) it is assumed that 
all horizontal symmetry elements of the space group 
lie on the central horizontal plane of the crystal. For 
single symmetry elements this is an approximation 
which becomes exact periodically with crystal thick- 
ness, with the periodicity of the c spacing, and must 
always be a close approximation for crystals having 
many repeat distances in the z direction. This 
approximation is implied in all applications of space- 
group-determined matrices to pattern intensities. It 
has also been assumed in other group treatments of 
CBED symmetries (Tanaka, Sekii & Nagasaw, 1983; 
Buxton, Eades, Steeds & Rackham, 1976). Its validity 
was first tested specifically during the study of/3-GaS 
belonging to the space group P63/mmc, in which 
horizontal diads occur at intervals of 30 ° around the 
[001] axis, separated vertically by c/4. In this case 
all horizontal symmetries were found to be active, as 
if they belonged to the central plane (Goodman & 
Whitfield, 1980). 

Diffraction symmetries at a zone are higher than 
would otherwise be expected, owing to the increased 
possibilities for symmetry interaction under CPA con- 
ditions. As a result single symmetry elements can only 
be examined in isolation at settings sufficiently far 
from a zone, as illustrated in the above study in the 
tests for a center of symmetry. 

Symmetry-group treatment overcomes the problem 
of such detailed analysis. Identification of a few pat- 
tern characteristics at chosen orientations, par- 
ticularly if they include dynamic extinctions, has been 
shown to lead to unequivocal identification of space 
group (Tanaka, Sekii & Nagasawa, 1983; Goodman, 
1984a). 
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Abstract 

In a previous investigation, a system of exact algebraic 
equations was derived for any number and type of 
anomalous scatterers. Solution of the equations pro- 
vides information concerning intensities of scattering 
and certain phase differences. In this paper, it is 
shown that when appropriate combinations of the 

phase differences and their values are made, the result 
is the evaluation of the differences of pairs of triplet 
phase invariants, one associated with the 
macromolecular structure and the second associated 
with the structure of the anomalous scatterers. It is 
usually easy to satisfy the condition that the values 
of triplet phase invariants associated with the struc- 
tures of the anomalous scatterers be close to zero. 
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